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Introduction

U understanding how the spatial structure of blood ves-
sel networks relates to their function in healthy and ab-
normal biological tissues could improve diagnosis and

treatment for diseases such as cancer. Angiogenesis, the forma-
tion of new blood vessels from existing ones, is the process by
which a tumour establishes its own supply of nutrients so that it
may grow and spread to other parts of the body. The mathematical
community has been studying the mechanisms of tumour-induced
angiogenesis for more than 35 years [1–3].

New imaging techniques generate multiple, high-resolution
images of the same tissue region, and show how vessel networks
evolve during disease onset and treatment. Such experimental ad-
vances have created an exciting opportunity for discovering new
links between vessel structure and disease through the develop-
ment of geometric and topological algorithms that can analyse
these rich data sets.

Here we explain how topological data analysis (TDA) can
be used to study the structure of a vessel network. TDA is a
growing field in the mathematical and computational sciences
that consists of algorithmic methods for identifying global and
multi-scale structures in high-dimensional data sets that may be
noisy and incomplete [4–6].

Tumour vessel networks
The structure of a vessel network can reveal the presence of an
underlying disease or how a patient may respond to treatment.
For example, tumour vasculature loses its hierarchical patterning,
has different fractal dimensions, tortuous (i.e. bent) and enlarged
vessels, and different paths for blood flow, which can inhibit
nutrient and drug delivery [7]. In addition, oxygen availability,
which determines treatment responsiveness, depends on the ves-
sel network structure [8]. Studies of vessel networks use metrics
such as inter-vessel spacing, number of branching points, ves-
sel length density, tortuosity and fractal dimensions [9]. While
these metrics can be related to tumour progression and treatment
response [10], their values may be sensitive to the algorithms
used to convert the raw images to network-based descriptions.
Further, most measures characterise networks at a single spatial
scale, although patterns may emerge at multiple spatial scales.
TDA offers a promising and rigorous alternative for relating the
structure of vessel networks obtained from raw images to their
function and the disease status of the perfused tissue.

Mathematical models of artificial vessel networks
A large number of mathematical models have been developed
over the past 30 years to study tumour-induced angiogenesis [1–3]
and to simulate artificial vessel networks. For example, now
we have multi-scale agent-based models that simulate angiogen-
esis and vascular tumour growth [11–13]. These models have
been used to investigate how vessel networks respond to anti-
angiogenic and other vascular targeting agents. For our purposes,
we can simulate the models under different conditions and obtain
data, which we can then compare with experimental observations.

We remark that tumour-induced angiogenesis networks are
inherently multi-scale ranging from arteries, to arterioles, to the
smallest single-cell capillaries. Therefore, it is natural to apply a
multi-scale method to analyse such data sets.

In this article, we present preliminary results where we apply
TDA to tumour-induced vascular networks. First, we introduce
topological data analysis and then describe the state-of-the-art an-
giogenesis data that are now being generated. Then we introduce
angiogenesis data, give preliminary results and end with a short
discussion.

Topological data analysis

Data from biological processes, which are observed as physical
objects, such as the vascular networks of interest here, are inher-
ently spatial networks. It is, thus, natural to employ data science
methods to analyse the geometric features of these networks.

Mathematics

One of the most well developed tools in TDA is persistent ho-
mology, which is also our preferred method here [4–6]. We will
describe below a generic procedure for associating a data set with
its persistent homology barcode, its topological signature. As we
will see, in applications this can flexibly be adjusted to suit dif-
ferent problems.

From point clouds to topological spaces
Given a point cloud P in Euclidean space RN we can define its
ε-neighbourhood Nε(P ) to be the union of balls Bε(p) of radius
ε around all points p in P :

Nε(P ) =
⋃
p∈P

Bε(p), ε ≥ 0.

The space Nε(P ) has a topology that varies with ε ≥ 0 from
a totally discrete space for ε = 0 to one large featureless blob
resembling a large ball for large ε. It is the spaces between these
extremes that are of interest. We seek to determine how their
characteristic topological features change as ε increases.

From topological spaces to combinatorial data
Topological spaces can be approximated by combinatorial data,
so-called simplicial complexes K = {Kn}n≥0. These are
higher-dimensional analogues of graphs. Indeed, given a point
cloud P and ε ≥ 0, we construct the associated Vietoris–Rips
complex V Rε(P ) by first building a graph with vertices P and
edges (p0, p1) for all pairs of points in P of distance d(p0, p1) ≤
ε. We then add an n-simplex for each complete subgraph on n+1
vertices. The combinatorial data are, thus, given by

V Rε(P ) =
⋃
n≥0

V Rε(P )n,

V Rε(P )n = {(p0, . . . , pn) | d(pi, pj) ≤ ε for all i, j},

where V Rε(P )n lists all n-simplices of our simplicial complex.
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From combinatorial data to linear algebra
Consider a simplicial complex K, and let F be a field; this could
be the real or complex numbers but often for computational topol-
ogy the field with two elements F2 = {0, 1} given by mod 2
arithmetic is chosen. Define the n-chains of K to be the vec-
tor space F[Kn] with basis the n-simplices, and a linear map
∂n : F[Kn] → F[Kn−1] that takes an n-simplex to its boundary,
the (alternating) sum of its faces. For the Vietoris–Rips complex,
this is simply

∂n(p0, . . . , pn) =
∑

n≥i≥0

(−1)i (p0, . . . , p̂i, . . . , pn)

where p̂i denotes that pi is removed.
A straightforward computation shows that applying the

boundary operator twice gives the zero map: ∂n◦∂n+1 = 0. This
important algebraic identity reflects the geometric fact that the
boundary of a boundary is always empty. Homology measures
the difference between the cycles (n-chains with zero boundary)
and the boundaries (n-chains that are boundaries of (n + 1)-
chains). For each n ≥ 0, define the nth homology group:

Hn(K) :=
ker ∂n

im ∂n+1

bn := dimHn(K) = dimker ∂n − dim im ∂n+1.

The number bn is also called the nth Betti number: b0 is the num-
ber of connected components of K and, for K a graph, b1 is the
total number of simple circuits. For more general K, the dimen-
sions of the higher homology groups give a count of how many
higher dimensional cavities there are. For example, the bound-
ary of an (n + 1)-simplex has a non-trivial homology group in
dimension n with Betti number bn = 1.

Figure 1: An example of a Vietoris–Rips filtration with exam-
ples of the complex at ε = 0, 0.1, 0.55, 1, 2 (top row). The
corresponding barcodes in dimension 0 and dimension 1 are
given where the horizontal axis gives the value of ε.

Filtering and functoriality
An important property of homology is functoriality: a map be-
tween simplicial complexes induces a map between their homolo-
gies. Now, for each ε′ < ε, we have an inclusion of the corre-
sponding Vietoris–Rips complexes V Rε′(P ) ⊂ V Rε(P ) and,

by functoriality, an induced map in homology. (Note, it is im-
portant here that we deal with homology groups and not just
Betti numbers!) Thus, with growing ε, we can track elements in
the homology groups of the corresponding complexes V Rε(P ).
A non-zero element that first appears (is born) at εbirth and is
mapped to zero (dies) at εdeath is represented by the interval (a
bar) [εbirth, εdeath). In H1, this will correspond to the formation of
a new circuit in the underlying graph at εbirth and filling of that
circuit with 2-dimensional simplices at εdeath. The nth persis-
tent homology PHn(P ) of P is the system of homology groups
Hn(V Rε(P )) for all ε > 0 with the induced maps.

There are two important results concerning persistent homol-
ogy, which we describe in the following two theorems.

Existence of barcode theorem: For each homological dimen-
sion n, compatible bases can be found so that for each ε, the di-
mension of HnV Rε(P ) is given by the number of corresponding
bars containing ε. In other words, the nth persistent homology
can be represented faithfully by a barcode [14]; see Figure 1 for
an example of a barcode.

Stability theorem: If two point clouds P and Q are close to
each other (in terms of the Hausdorff distance), then the cor-
responding n-dimensional barcodes are also close (in terms of
the bottleneck distance). In other words, the persistent homol-
ogy transform PHn from point clouds to bars is continuous [15].

Adapting persistent homology to different problems
Not all data sets come in the form of a point cloud and different
applications demand a change in the general set-up. The main
feature of persistent homology is that it can track the changing
topology as the geometric object of interest is filtered in a suitable
way. Above we considered a sequence of increasing Vietoris–
Rips complexes as the radius of the little balls grew slowly until
they eventually filled the whole space. Below we study larger and
larger parts of the system of blood vessels in a tumour by growing
the radius of vision (so just one ball) from the tumour centre.

Statistical analysis in topological data analysis

Once a Vietoris–Rips complex or a related TDA summary of the
data, such as a barcode, is obtained, statistics can be used to de-
tect deviations from what would be expected. Although for most
summaries such as Betti numbers, theoretical results about what
to expect at random are available (see, for example, [16]), for most
applications, these have assumptions that are too general and the-
oretical results are yet to be derived from more restrictive models.

In the absence of such results, simulations are employed for
statistical inference. Suppose that data from a candidate model
can be generated and the TDA summaries calculated. These sum-
maries can then be used to indicate what is to be expected un-
der the model. An observed summary outside (or close to the
boundary of) the range of these simulated summaries indicates
a deviation from the expectation. For vascular networks, theo-
retical models have been investigated (for example, in [11]) but
depending on the complexity of the simulations, simpler models
based on branching processes may be more appropriate. If it is
not possible to simulate from appropriate models, then statisti-
cal machine learning offers a model-free approach to classifying
data through using TDA summaries as features in an automated
learning method such as random forests.
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Computation

Over the last decade, considerable effort has been spent develop-
ing and improving the computation of persistent homology. The
first paper on the standard persistent homology algorithm was
introduced in [14]. Since then, multiple software libraries have
been developed that enable different types of data to be analysed,
for example, point clouds, networks or images. The libraries are
often specialised for certain filtrations. The data structures of the
input and output differ for each library. Many of the libraries have
software for computing statistical summaries of topological out-
puts. For a review of the software and a tutorial, see [17].

Angiogenesis data

High-resolution 3D images showing vessel network evolution in
mouse tumours undergoing treatment (with radiotherapy and vas-
cular targeting agents) are being generated by Professor Ruth
Muschel’s research group (see Figure 2(a) for an example), while
Professor Mike Brady’s group (biomedical engineering) are de-
veloping new image segmentation tools to extract vessel struc-
tures from these images [6] (see Figure 2(b) for an example of
the structures extracted). The imaging data here were obtained
from tumours generated from murine colon carcinoma cells in
mice genetically engineered to have fluorescent endothelium. Us-
ing video 2-photon microscopy, the entire tumour and its blood
vessels were visualised daily after tumour induction.

The mice were subjected to different treatment regimens once
the tumours reached a specified size: (i) controls, (ii) treatments
known to increase vessel sprouting, (iii) treatments known to de-
crease vessel sprouting, (iv) treatment by single-dose irradiation
(1 × 15Gy) and (v) treatment by fractionated-dose irradiation
(5× 3Gy). In addition to examining the structure of the vessels,
vascular function was also evaluated. While statistical techniques
can characterise facets of the networks (e.g. vessel lengths, radii
and tortuosity), the analysis and interpretation of their topologi-
cal features and how these vary across spatial scales remain open
problems that TDA is ideally suited to address.

Preliminary results

We characterise the unique features of tumour blood vessels,
in particular the loops and the high degree of tortuosity, using
persistent homology. We exploit the fact that our data are already
in the form of a network rather than a point cloud.

Loops can be captured by persistent homology in dimension
1 of any filtration that is built using the structure of the vessel net-
work data. Tortuosity has previously been successfully quantified
when studying persistent homology in dimension 0 of a filtration
that can be imagined as a stepwise sliding of a plane over a bio-
logical network. In the first filtration step, the entire network is
situated on one side of the plane. As the plane moves, it starts
intersecting the network until eventually the whole network is on
the other side of the plane. The side of the plane that is initially
empty thereby gives rise to a sequence of embedded objects that
can be interpreted as a filtration of the network. This approach
has been used to quantify the tortuosity of brain arteries [18] and
the geometric structure of airways [19]. Kanari et al. [20] use a
similar approach to classify the branching patterns of neurons us-
ing radial distances from the neuronal tree root, i.e. considering
a sphere with decreasing radius around the root. These examples
motivate the approach adopted here.

In contrast to brain arteries and neurons, tumour blood ves-
sels are not tree-like objects and they do not have a natural ori-
entation. By exploiting the fact that tumours are often viewed
as spherical objects, we root our filtration in the tumour centre.
Since we perform our analysis on the tumour blood vessels rather
than the tumour itself, we approximate the tumour centre by the
centre of mass of the blood vessel point data. We then search the
neighbourhood of the centre point, increasing the radial distance
stepwise and include all vessel points within the radius. If two
points that are connected by an edge in the blood vessel data are
within the given radius, we add the edge to our filtration.

Figure 3 shows a schematic of the radial filtration on blood
vessel data. Based on this filtration, we study the topology of
the growing network at every filtration step capturing tortuosity
in dimension 0 and loops in dimension 1. Since the filtration

Figure 3: Schematic of the radial filtration of a tumour blood
vessel network. On the kth filtration step, we include all vessel
nodes and edges that are fully contained in the purple ball of
radius dk around the centre of mass of the vessel points.

Figure 2: Example images of tumour blood vessels. (a) Tumour blood vessels as seen from above under the microscope. Slices
of the tumour are imaged to allow full 3D reconstruction.1 (b) View from above on 3D skeleton of tumour blood vessels coloured
according to a measure of tortuosity.2 (c) Vessel points we extracted from the 3D skeleton. Vessel points at the beginning or
end of a branch (branching points) are shown in red. We interpret all vessel points as nodes and physical connections between
them as edges in a blood vessel network, which is the input into our analysis. (d) Perspective corresponding to the 2D image
shown in (a) and (b) on vessel points we extracted from the skeleton image.
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Figure 4: Example barcodes from the radial filtration of networks subjected to two different treatment conditions. The vessel
networks were imaged 3 days after treatment was administered. Each bar in the barcodes represents one topological feature
as the radius increases (horizontal axis). The bar begins at the distance to the tumour centre at which the feature is first
recorded and ends when that feature disappears in the filtration.

generates topological information with respect to the tumour cen-
tre, we also obtain information about the heterogeneity of these
characteristics within a single network.

In Figure 4 we present barcodes obtained from the radial
filtration of tumour blood vessel networks that were subjected
to different treatment regimes: (a) treatment to decrease vessel
sprouting and (b) treatment to increase vessel sprouting.

We observe differences in the barcodes in both dimensions.
We note also that the barcodes end at different filtration points,
i.e. around 4000 for the decreased sprouting case and around 3000
for the increased sprouting case. These values reflect biologi-
cal differences in the sizes of the two tumours. In dimension 0,
where we expect to capture tortuosity, we find short-lived con-
nected components, i.e. short bars, interspersed with longer-lived
connected components, i.e. more persistent bars. In dimension 1,
we see more loops in the network exposed to treatment that in-
creases sprouting than the network exposed to treatment that de-
creases sprouting, as expected. This indicates that barcodes can
capture the effects of treatment on both the sprouting behaviour
and tortuosity of vessel networks.

Discussion and outlook

In this article we have presented preliminary results that show
how TDA can be used to quantify changes in the morphology of
tumour vascular networks following exposure to treatments that
alter the rate at which new vessels form. By employing TDA,
we could analyse the vessels at multiple scales from the tumour
centre, without having to select a threshold for network analysis.
Thus, TDA is also a method for detecting parameter sensitivity
in topological features, which may be useful for other multi-scale
data sets. While at this stage differences in the spatial distribu-
tion of tortuosity or loops are not apparent, in future work, we will
investigate these observations further by statistically analysing the
full data set.

Moreover, we will use our existing multi-scale models of vas-
cular tumour growth to generate artificial networks for analysis
with TDA [11–13]. In this way, we aim to establish whether ob-
served patterns (such as the persistence of cycles in the topolog-
ical description of a network) can be related to the specific bio-
physical mechanisms relevant to the construction of vessel net-
works and investigate how the barcode associated with a particu-
lar tumour changes as the tumour and its vasculature evolve. We

will also simulate the experimental image acquisition process by
adding the noise associated with multi-photon microscopy to the
artificial networks. An analysis of synthetic networks will be used
to assess the robustness of TDA to image-processing artefacts.

In the longer term, the application of TDA to clinical images
and spatial biomedical networks may reveal new relationships be-
tween network structure and treatment response. For example, in
cancer, there is no consensus on vessel normalisation theory [21],
which proposes that vascular targeting agents transiently improve
tumour response to therapy by reverting an aberrant tumour vas-
culature to one resembling healthy tissue. TDA may be used to
determine if characteristics more typical of healthy vasculature
are being restored during treatment, thereby improving the diag-
nostic potential of existing imaging methods. In the future, we
will also investigate TDA methods for other applications, such as
wound healing, retinal pathology and cardiac disease.
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Notes

1. Image taken by Bostjan Markelc and Jakob Kaeppler.

2. Skeleton and tortuosity values extracted by Russell Bates.
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